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Polarization switching in a planar optical waveguide

V. Boucher, H. Leblond,* and X. Nguyen-Phu
Laboratoire POMA, UMR CNRS 6136, Universite´ d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex, France

~Received 10 February 2003; published 24 November 2003!

The multiscale expansion formalism is applied to the study of nonlinear planar optical waveguides. It allows
us to describe the linear and nonlinear propagation for both transverse electric and transverse magnetic modes,
and the interaction between them. An accurate computation of the nonlinear self- and cross-phase modulation
coefficients allows one to give account of the polarization switching which has been observed experimentally.
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I. INTRODUCTION

Nonlinear optical guided modes and solitons
waveguides are of great interest, owing to their potential
plications to optical signal processing devices@1–3#, but they
can hardly be described in a very rigorous way. The va
tional procedure proved to be a powerful tool for findin
simple approximations of the optical waveguided mod
@4,5#. A variety of numerical approaches has also been u
@6–10#. Special interest has been given to analytical meth
of finding solutions in slab waveguides@11–16# and of ana-
lyzing the important question of their stability@17–19#. In
this paper we apply the multiscale expansion formalism
planar waveguides, in order to study the nonlinear propa
tion of a short localized wave packet, and the interact
between different guided modes. This formalism has alre
been applied to many problems. It was first used by Tan
and Washimi in plasma physics@20#, and recently in other
domains of nonlinear physics, such as hydrodynamics or
physics of waves in ferromagnetic media@21#. However,
there are only few applications of this formalism in its ri
orous formal form to the study of waveguides@22,23#. The
second of these papers is a preliminary to the present s
It discusses the propagation of a short pulse in a planar
tical waveguide filled with a Kerr medium. The first order
the multiscale expansion gives the expressions of the lin
modes. At a higher order, a nonlinear evolution equation
obtained. It takes into account the waveguiding structu
i.e., the boundary conditions, the waveguide parameters,
the nonlinear susceptibility of the medium. On the oth
hand, experiments have been performed in the same lab
tory @24#. Once the formation of spatial solitons has be
obtained, polarization measurements have been perform
They brought forward an instability of the transverse ma
netic ~TM! modes. Indeed, the polarization switches to
transverse electric~TE! one as soon as the input beam ha
nonzero component in the corresponding direction. The
of the present paper is to give a theoretical account of
observation, through a rigorous derivation of the mo
equations governing the nonlinear interaction between
modes.

*Electronic address: herve.leblond@univ-angers.fr
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II. DERIVATION OF A MODEL

A. Setup and scales

We consider a wave propagating in a Kerr-like nonline
dielectric waveguide constituted by a nonlinear film bound
by two linear media~Fig. 1!. The essential physical assum
tions read as follows. First, the amplitude of the wave
small, the approximation is weakly nonlinear. This smallne
is purely formal, because the description of nonlinearity
rather phenomenological, a theoretical reference value ca
found only through the quantum theory. Second, the pu
lengthL is very large with regard to the wavelengthl, and
very small with regard to the propagation lengthD. Thus,
three length and time scales are involved,l,L'l/«, D
'l/«2.

Assuming the medium to be nonmagnetic, the Maxw
equations reduce to the following wave equation for the el
tric field E:

DE2“~“•E!5
1

c2
] t

2@E1P#, ~1!

wherec is the light velocity in vacuum. The time variablet is
rescaled ast85ct, so thatc takes the value 1. The primes a
omitted below. We denote by] t the derivative operator]/]t
with regard to the time variablet and so on.“ is the three-
dimensional gradient operator relative to the space varia
x, y, andz. We assume thatP can be described by the fol
lowing standard model: It splits into the sumP5PL1PNL of
a linear partPL satisfying

FIG. 1. Space scales involved in waveguide geometry.
©2003 The American Physical Society04-1
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PL5x (1)* E5E
2`

t

dt1x (1)~ t2t1!E~ t1!, ~2!

and a nonlinear partPNL corresponding to the nonlinear po
larization such that

PNL5x (3)* ~E,E,E!

5E
2`

t

dt1E
2`

t1
dt2E

2`

t2
dt3x (3)~ t2t1 ,t2t2 ,t2t3!:

E~ t1!E~ t2!E~ t3!. ~3!

x (1) andx (3) are, respectively, the linear and third-order no
linear susceptibility tensors. Experiments have been
formed using a liquid medium such as CS2 @24#. Then, as in
any centrosymmetrical material, the second-order nonlin
susceptibility tensorx (2) is zero. This condition is assume
to be satisfied here. The fieldsE andP undergo a threefold
expansion: in a power series of some small parameter«, in a
series of harmonics of each fundamental frequency, and
the linear modes of the waveguide.

This expansion is written as

E5(
l , j

« lEl
jeiw j , ~4!

where the indexj labels both the phasew j and the corre-
sponding amplitudeEl

j . It refers either to a waveguide mod
or to one of its harmonics. The amplitudesEl

j are functions
of y and of slow variables to be specified. The polarizat
densityP is expanded in the same way.

B. Study of an isolated mode

In a preliminary study@23#, we considered the propaga
tion of a wide enough short pulse, of the ‘‘temporal’’ typ
corresponding to a unique mode of the guide. We perform
a standard nonlinear Schro¨dinger ~NLS!-type expansion,
which used the slow variables

t5«S t2
z

v D , z5«2z. ~5!

The y dependency describes the transverse structure of
waveguide modes.y is a variable of order«0, not a slow
variable, which gives an account of the following assum
tion: the waveguide thickness has the same order of ma
tude as the wavelengthl. The variablet describes the lon-
gitudinal or temporal shape of the pulse, in a frame mov
at the wave packet velocityv. It is a slow variable of order
«, which means that the pulse length has the same orde
magnitude asL5l/«. The variablej5«x gives account of
the transverse shape of the beam, in the same scalet,
while z is the variable that describes the evolution of t
pulse shape during the propagation. Its order is«2, giving
account for propagation distances aboutD5l/«2.

This scaling is almost the same as is commonly used
the derivation of the nonlinear Schro¨dinger equation in bulk
media@25#. The main difference lies in the existence of t
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-
r-

ar

on

n

d

he

-
i-

g

of

r

transverse variabley. It can thus describe a beam of som
hundred micrometers width, propagating in a waveguid
few micrometers thick. For instance, the wavelengthl being
about 0.5mm, and the perturbative parameter«.531023,
the order of magnitude of the pulse width and length isL
5l/«.100 mm, which corresponds to a characteristic d
ration of 0.3 ps, and the propagation distance is abouD
5l/«2.2 cm.

The nonlinear term, being cubic, appears directly in
nonlinear propagation equation, and does not give rise to
particular problem. The difficulty comes from the linear pa
description of the guiding and treatment of the wave pack
The boundary conditions at the two interfaces are that of
electromagnetism, and the continuity conditions for the m
netic field must be taken into account. We retrieve in t
way the complete description of the guided modes, TE,
TMs. In the TM modes, the electric fieldE has a longitudinal
component. After a long computation, we derive the N
equation that describes the evolution of the amplitude o
temporal pulse for an isolated mode, submitted to its s
phase modulation only, as

2ik]zA2kk9]t
2A1GuAu2A50, ~6!

where A is the wave amplitude. In this way we obtain
particular an explicit expression of the self-phase modulat
coefficientG which takes into account the waveguide stru
ture. For the TE modes, this expression is@23#

G5Ge5g1x̂xxxx
(3) ~v,v,2v!, ~7!

where the coefficientg1 has a complicated expression th
involves the guide thicknessa, the transverse wave vectorq
of the guided wave, and the decay lengths 1/k2 and 1/k3 of
the two evanescent waves that exist on each side of the g
ing layer. Notice thatq, k2, andk3 depend on the mode, an
through it on the parameters of the guide: its thicknessa and
the optical indicesn, n2, and n3 of the three media. The
expression of the nonlinear coefficientG for a TM mode is

G5Gm5h1ax̂xyxy
(3) ~v,v,2v!1h1bx̂xyyx

(3) ~v,v,2v!.
~8!

The coefficientsh1a andh1b are expressed also as functio
of these parameters. A plot of the values ofGe andGm cor-
responding to the first two guided modes TE1 and TM1, for
values of the parameters close to that of the experiment
given in Fig. 2. The difference between these two quanti
is weak, but can explain the observed polarization instabi

III. INTERACTION BETWEEN TWO MODES

A. The physical situation

While the previous ansatz was defined in order to be
close as possible to the standard derivation of a NLS eq
tion as in Ref.@26#, we intend here to set the problem clo
to some experimental situation, which is as follows: T
pulse length is about 30 ps, which is so long with regard
the optical period that the longitudinal variations of the pu
should be neglected. The value of the group velocity disp
4-2
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sion k9 in the considered materials is very small, which im
proves this approximation. Thus, formally, we consider a s
tionary beam, not modulated in time. The amplitudesEl

j are
functions ofy and of slow variables (j,z) defined by

j5«x, z5«2z. ~9!

We are interested in soliton-type propagation, often
scribed as a balance between diffraction and nonlinea
This effect can arise only if the propagation length has
same order of magnitude as the diffraction length or R
leigh length, namely, the latter isLR5kw2 wherew is the
beam waist. In the present case, the beam waist is abo
few L5l/«. The Rayleigh length associated withL is then
LR5kl2/«2. This shows that the correct order of magnitu
of the variablez is «2.

Second, the wave field decomposes on the linear pro
gation modes of the waveguide. There are two classe
waveguide modes, TE (TE1 , TE2 , . . . ) and TM (TM1,
TM2, . . . ), corresponding to the two perpendicular tran
verse linear polarizations. Interaction between modes is m
efficient when their group and phase velocities are very cl
together. It can be seen that the propagation constants
TEn and a TMn mode with the samen are very close to-
gether, while the difference between the propagation c
stants for a TEn and a TEn8 mode withnÞn8 is much larger
~Fig. 3!. Therefore the study of nonlinear interaction betwe
modes is of particular interest when the modes conside
are a TEn mode and a TMn one, with the samen. The beam
used experimentally has essentially a Gaussian shape.
linear decomposition of such a Gaussian beam on the b
of the waveguide modes shows that the first modes take
major part of the energy as shown in Table I. Therefore
restrict the study to the case where the dominant term
expansion~4! of the electric fieldE involves only two
modes, a TE one and a TM one, intended to be TE1 and
TM1, despite this specification not being involved in the fo
mal computation.

Formally, the dominant term of order«1 in Eq. ~4! con-
tains two fundamental phasesj 5e or m with

we5kez2vt, wm5kmz2vt, ~10!

FIG. 2. Normalized nonlinear coefficientsGe and Gm for the
TE1 and TM1 modes, respectively, vs the waveguide thicknessa.
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and the conjugated phasesw2e52we andw2m52wm . At a
higher order, the phase of the mode harmonicj has the fol-
lowing expression:

w j5kjz2v j t5pewe1pmwm , ~11!

wherepe andpm are arbitrary algebraic integers.

B. The ‘‘exact’’ computation

Expansions~4!, together with definition~9! of the slow
variablesj and z, are substituted into the basic equatio
~1!–~3!. Then the coefficients of each power of« are col-
lected to obtain a set of equations, which we solve order
order.

At first order, assuming that the amplitudeE1
e depicts a

TE mode, we have

E1
e5S E1

e,x

0

0
D , ~12!

where the amplitudeE1
e,x satisfies

]y
2E1

e,x1~v2ni
22ke

2!E1
e,x50. ~13!

FIG. 3. Representation of the wave vectork computed for the
TE1 , TE2 , TM1, and TM2 modes, against the guide thickness 2a.
The difference between the values ofk obtained for a TE and for the
relative TM mode is very small, even in very thin guides.

TABLE I. Decomposition of the incident Gaussian beam on t
waveguide modes. For eachi 51,2, . . . ,6, I i5*2`

1`G(y)Ei(y)dy,
where Ei and G are the transverse profiles of the TEi mode and
Gaussian input, respectively.

Mode TE1 TE2 TE3 TE4 TE5 TE6

I i /I 1 1 0.065 0.120 0.058 0.076 0.022
4-3
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The resolution of Eqs.~13! with the electromagnetic bound
ary conditions leads to the dispersion relation for the
waveguide modes@25#:

tan~2qea!5
qe~k2e1k3e!

qe
22k2ek3e

, ~14!

whereqj and ki j ( j 5e,m, i 52,3) are the transverse wav
vectors, related to the longitudinal wave vectorkj and the
pulsationv through the dispersion relation of optical wav
in bulk media, which reads as (i 52,3 andj 5e,m)

qj5Av2n22kj
2, ~15!

ki j 5Akj
22v2ni

2. ~16!

In the same way, assuming thatE1
m depicts a TM mode,

E1
m5S 0

E1
m,y

E1
m,z
D , ~17!

with

]yE1
m,y1 ikmE1

m,z50, ~18a!

]y
2E1

m,z1~v2ni
22km

2 !E1
m,z50. ~18b!

The resolution of Eqs.~18!, taking into account the electro
magnetic boundary conditions, leads to the dispersion r
tion of the TM modes:

tan~2qma!5
qmn2~k2mn3

21k3mn2
2!

~qm
2 n2

2n3
22k2mk3mn4!

. ~19!

The second order leads to equations analogous to Eqs.~13!
and ~18!, with the index 1 replaced by 2.

The general expression of the nonlinear polarization v
tor which arises from the third order is

P3
j 5 (

w j 1
1w j 2

1w j 3
5w j

x̂ (3)~v j 1
,v j 2

,v j 3
!:E1

j 1E1
j 2E1

j 3 . ~20!

This polarization vector gives account of an eventual c
pling between waveguide modes. For instance, regarding
P3

e,x component, apart from the permutations, there are
triplets that satisfy the phase matching conditions:

~w j 1
,w j 2

,w j 3
!5~we ,we ,2we! , ~21a!

~w j 1
,w j 2

,w j 3
!5~we ,wm ,2wm!. ~21b!

This way we obtain the following model:

2ike]zAe1]j
2Ae1GeuAeu2Ae1g2uAmu2Ae50, ~22!

2ikm]zAm1]j
2Am1GmuAmu2Am1h2uAeu2Am50. ~23!
05660
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Here Ae and Am are the respective amplitudes of the tw
considered modes. The cross-phase modulation coeffici
g2 and h2 are, as the self-phase modulation coefficientsGe

andGm , proportional to some components of thex̂ (3) tensor.
The proportionality constants depend in a complicated,
explicitly known, way on the waveguide parameters.

The model@Eqs.~22! and~23!# gives account of self- and
cross-phase modulation. It does not allow any energy
change between the two modes. This feature is easily pro
by multiplying the first equation byAe* , the second byAm* ,
subtracting the complex conjugate, and integrating over
values ofj. This model assumes that the phase misma
(km2ke) between the two modes is large, and is adapted
the description of the interaction between TEn and TMn8
with nÞn8. It obviously generalizes to two modes TEn and
TEn8 or TMn and TMn8 modes withnÞn8.

C. Four-wave-mixing term

However experiments show that an energy exchange
occur @24#. In fact, although formally distinct, the phase v
locities of the two modes are very close together: their re
tive difference is about 1026. For instance, for a guide o
6 mm thickness, the relative differencedk/k between the
wave vectors of TE1 and TM1 modes is 1, 131026. When a
finite value of the perturbative parameter« is chosen, it is
typically «51023: a difference as small as this value
dk/k must be considered as zero. From the mathemat
point of view, dk/k is finite, while « tends to 0, which as-
sumes that« is much smaller thandk/k. The rigorous math-
ematical derivation of the system of Eqs.~22! and ~23! be-
comes erroneous when we replace the infinitely small« by
some finite value. In particular, the system of Eqs.~22! and
~23! is valid only when the relative difference between t
wave vectors of the two modes is above the value of«,
which is by no means the case in the experimental situa
considered. Therefore we use from now on a little more p
nomenological approach. Formally, we write

ke2km5«2dk, ~24!

which corresponds to the physical orders of magnitude
must be noticed that Eq.~24! is not perfectly consistent from
the mathematical point of view, since initially the differenc
ke2km did not depend on«. In fact it seems to be impos
sible to give account of the smallness of this quantity in
frame of the multiscale expansion in a perfectly rigoro
way. Using Eq.~24! and writing down explicitly the phase
factorseikez andeikmz in expression~20! for the polarization
vector componentsP3

e,x , P3
e,y , and P3

e,z yields, taking into

account thex̂ (3) tensor symmetries,

P3
e,xeikez5@3x̂xxxx

(3) uE1
e,xu2E1

e,x16x̂xxyy
(3) ~ uE1

m,yu2

1uE1
m,zu2!E1

e,x#eikez13x̂xyyx
(3) @~E1

m,y!2

1~E1
m,z!2#E1

e,x* ei (2km2ke)z. ~25!

(* denotes complex conjugation.! The phase mismatchke
2km can be written as
4-4
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ei (2wm2we)5ei (2km2ke)z2vt5eiwee22idkz, ~26!

and the nonlinear polarization componentP3
e,x becomes

P3
e,x53x̂xxxx

(3) uE1
e,xu2E1

e,x16x̂xxyy
(3) ~ uE1

m,yu21uE1
m,zu2!E1

e,x

13x̂xyyx
(3) @~E1

m,y!21~E1
m,z!2#E1

e,x* e2 i2dkz. ~27!

Using the same procedure we get, forP3
m,y andP3

m,z ,

P3
m,y53x̂xxxx

(3) uE1
m,yu2E1

m,y16x̂xxyy
(3) ~ uE1

m,zu21uE1
e,xu2!E1

m,y

13x̂xyyx
(3) @~E1

m,z!21~E1
e,x!2#E1

m,y* ei2dkz, ~28!

P3
m,z53x̂xxxx

(3) uE1
m,zu2E1

m,z16x̂xxyy
(3) ~ uE1

m,yu21uE1
e,xu2!E1

m,z

13x̂xyyx
(3) @~E1

m,y!21~E1
e,x!2#E1

m,z* ei2dkz. ~29!

Formally, the phase matching is realized, in what conce
the z dependency, since it has been possible to incorpo
the phase mismatch into a dependency with regard to
slow variablez.

The third order of the expansion leads to the equation

]y
2E3

e,x1~v2ni
22ke

2!E3
e,x522ike]zE1

e,x

2]j
2E1

e,x2v2P3
e,x , ~30!

]yE3
m,y1 ikmE3

m,z52]zE1
m,z2

ikm

ni
2

P3
m,z

2
1

ni
2
]yP3

m,y , ~31!

]y
2E3

m,z1~v2ni
22km

2 !E3
m,z522ikm]zE1

m,z2]j
2E1

m,z

2
ikm

ni
2

]yP3
m,y2

qm
2

ni
2

P3
m,z.

~32!

We solve the above differential equations where the rig
hand-side member depends only on expressions calculat
the first order. Applying boundary conditions, it yields afte
large amount of calculations the following nonlinear coup
propagation equations:

2ike]zAe1]j
2Ae1GeuAeu2Ae1g2uAmu2Ae

1g3Am
2 Ae* e22idkz50, ~33!

2ikm]zAm1]j
2Am1GmuAmu2Am1h2uAeu2Am

1h3Ae
2Am* e2idkz50. ~34!

The nonlinear interaction coefficientsg2 ,g3 ,h2 ,h3 are

g25g2x̂xyxy
(3) , g35g3x̂xyyx

(3) ,
05660
s
te
e

t-
at

h25h2x̂xyxy
(3) , h35h3x̂xyyx

(3) , ~35!

where the coefficientsg2 , g3 , h2, and h3 are expressed
explicitly in terms of the waveguide parameters. They a
given in the Appendix.

The first nonlinear terms in Eqs.~33! and ~34! give ac-
count of the self-phase modulation. Notice the symme
breaking introduced by the waveguide for TM modes.
deed, the self-action termGm cannot be factorized in the
same way asGe ~expressions given in Ref.@23#!. The x̂xyxy

(3)

and x̂xyyx
(3) components have then different weights. Th

leads to different self-focusing powers. The second nonlin
terms in Eqs.~33! and ~34! describe the interaction of th
two components through the variations of the optical ind
induced on each component by the other. The last term
both equations are the four-wave-mixing terms; they ena
the energy exchange between the two orthogonal com
nents.

D. Polarization switching

The numerical resolution of Eqs.~33! and~34! shows that
the difference between the self-phase modulation const
Ge and Gm , although very small, is large enough to giv
account of the experimentally observed commutation of
larization. On the left half of Fig. 4 is represented the ev
lution of the amplitudes of the two componentsAe andAm ,
for a hyperbolic secant shaped initial data, corresponding
a soliton, whose polarization is linear, making a 45° an
with the plane of the guide. In this computation, the coe
cients have the normalized values valid in a bulk isotro

FIG. 4. Comparison of the evolution of the amplitudes of t
two polarization components, for a small variation of the self-ph
modulation coefficientGm . On the left: evolution of the amplitude
Ae andAm of the TE and TM modes, respectively, against transv
sal spacex and propagation distancez, assuming the bulk values o
the nonlinear coefficients. Bottom: evolution of the maximum va
of the amplitudes. On the right: the same quantities but the non
ear self-phase modulation of the TM modeGm has been reduced
from 1 to 0.999. Polarization switching is observed.
4-5
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BOUCHER, LEBLOND, AND NGUYEN-PHU PHYSICAL REVIEW E68, 056604 ~2003!
medium:Ge5Gm51, g25h252/3, andg35h351/3. It is
seen that the pulse propagates without deformation or va
tion of its polarization. On the right half of the same figure
represented the evolution of the same amplitude in a slig
different case: the self-phase modulation coefficient of
TM mode has been replaced byGm50.999, the remaining
being unchanged. It is seen that a commutation, or rathe
oscillation, of the polarization occurs. Intentionally, we d
not take into account in this computation the variations of
values of the coefficientsg2 , h2 , g3, and h3 due to the
guiding, because the aim of the computation is to show
the computed variation ofG, despite being small, is suffi
cient by itself to give account of this experimental result.

Experiments using a waveguide filled with CS2 have
shown a polarization switching, from the TM to the TE p
larization, as soon as the incident polarization is not pur
TM, i.e., not exactly perpendicular to the plane of the gui
cf. Fig. 5. When the input power is increased, in the fi
stage where self-phase modulation occurs, the amplitud
the TE component increases while that of the TM one
creases. In the second stage, this phenomenon saturate
to the action of the stimulated Raman scattering, as show
Fig. 5. The theoretical study of the latter observation is
for further investigation. See Ref.@24# for more details abou
this experiment. Using the formulas listed in the Append
we have computed the accurate values of the nonlinear
efficients of the evolution Eqs.~33! and ~34! corresponding
to the experimental data. The obtained coefficients are g
in Table II. The numerical resolution of Eqs.~33! and ~34!
using these coefficients has been performed. In order tha
simulation can be compared with the experimental data,
computed the amplitudes of the modes at the output fo
fixed propagation length and varying input power. Th

FIG. 5. Relative evolution of the amplitudes of the two pola
ization components: experimental data to be compared to the t
retical computation of Fig. 6.

TABLE II. Values of the nonlinear interaction coefficients pe
taining to the experimental data.

Ge Gm g2 h2 g3 h3

0.9999 0.9993 0.6681 0.6649 0.3341 0.332
05660
a-

ly
e

an

e

at

ly
,
t
of
-
due
in
t

,
o-

n

he
e
a

yields Fig. 6. It reproduces the polarization switching with
good agreement with experiment, as can be seen from c
parison with the corresponding experimental Fig. 5.

IV. CONCLUSION

From the Maxwell equations we have derived the gene
wave propagation equations in a nonlinear waveguide for
and TM modes. While, regarding its linear part, the comp
tation perfectly agrees with the already known results,
nonlinear coefficient in the nonlinear Schro¨dinger equation
depends on the considered mode and the waveguide ge
etry. We show in particular that the self-phase modulat
coefficients depend on the polarization of the beam, with t
of the TM mode inferior to that of the TE one, in agreeme
with experimental results. Using an expansion formed b
superposition of linear modes, we are able to describe
interaction between a TE and a TM mode, which occ
during the propagation. The description uses two coup
nonlinear Schro¨dinger equations, whose coefficients ha
been computed explicitly. We have shown that the sm
variations of these coefficients that have been computed
account of the polarization instability which had been o
served experimentally. Numerical simulations confirmed
dominance of the TE mode upon the TM one.

APPENDIX: NONLINEAR INTERACTION COEFFICIENTS

The coupled nonlinear propagation Eqs.~33! and ~34!,
that describe the coupling between the two polarizations
the waveguide, involve four interaction coefficientsg2 , g3 ,
h2, andh3 related to components of thex (3) tensor through
expressions~35!. The expressions of the coefficientsg2 , g3 ,
h2, andh3 involved in these formulas are given below.

Coefficientsg2 and h2 express the action of the guid
induced by one polarization on the other, and involveg2 and
h2 , respectively:

o-

FIG. 6. Relative evolution of the amplitudes of the two pola
ization components, computed theoretically using the coefficien
Table II.
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