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Polarization switching in a planar optical waveguide
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The multiscale expansion formalism is applied to the study of nonlinear planar optical waveguides. It allows
us to describe the linear and nonlinear propagation for both transverse electric and transverse magnetic modes,
and the interaction between them. An accurate computation of the nonlinear self- and cross-phase modulation
coefficients allows one to give account of the polarization switching which has been observed experimentally.
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I. INTRODUCTION II. DERIVATION OF A MODEL

A. Setup and scales

Nonlinear optical guided modes and solitons N \we consider a wave propagating in a Kerr-like nonlinear
waveguides are of great interest, owing to their potential apgjelectric waveguide constituted by a nonlinear film bounded
plications to optical signal processing devi¢gs 3], butthey  py two linear medidFig. 1). The essential physical assump-
can hardly be described in a very rigorous way. The variations read as follows. First, the amplitude of the wave is
tional procedure proved to be a powerful tool for finding small, the approximation is weakly nonlinear. This smallness
simple approximations of the optical waveguided modess purely formal, because the description of nonlinearity is
[4,5]. A variety of numerical approaches has also been usethther phenomenological, a theoretical reference value can be
[6—10]. Special interest has been given to analytical method&und only through the quantum theory. Second, the pulse
of finding solutions in slab waveguid¢$1-16 and of ana- lengthL is very large with regard to the wavelength and
lyzing the important question of their stabilift7—19. In  very small with regard to the propagation lenddh Thus,
this paper we apply the multiscale expansion formalism tdhree length and time scales are involvedl ~\/e, D
planar waveguides, in order to study the nonlinear propaga™ Ne?,
tion of a short localized wave packet, and the interaction Assuming the medium to be nonmagnetic, the Maxwell
between different guided modes. This formalism has alreadfguations reduce to the following wave equation for the elec-
been applied to many problems. It was first used by Taniutiic field E:
and Washimi in plasma physi¢&0], and recently in other
domains of nonlinear physics, such as hydrodynamics or the AE_V(V,E):iatZ[EJF P, (1)
physics of waves in ferromagnetic medial]. However, c?
there are only few applications of this formalism in its rig-
orous formal form to the study of waveguidgz2,23. The
second of these papers is a pre"minary to the present StudWhereC is the ||ght VelOCity in vacuum. The time variallés
It discusses the propagation of a short pulse in a planar op€escaled as’=ct, so thatc takes the value 1. The primes are
tical waveguide filled with a Kerr medium. The first order in Omitted below. We denote by the derivative operata#/dt
the multiscale expansion gives the expressions of the linedtith regard to the time variabfeand so onV is the three-
modes. At a higher order, a nonlinear evolution equation idimensional gradient operator relative to the space variables
obtained. It takes into account the waveguiding structureX ¥: @ndz We assume tha® can be described by the fol-
i.e., the boundary conditions, the waveguide parameters, ar{awmg standard m.odgl: It splits into the supa=P, + Py, of
the nonlinear susceptibility of the medium. On the other® linear partP, satisfying
hand, experiments have been performed in the same labora-
tory [24]. Once the formation of spatial solitons has been
obtained, polarization measurements have been performer
They brought forward an instability of the transverse mag- / @
netic (TM) modes. Indeed, the polarization switches to a Y z
transverse electri€TE) one as soon as the input beam has a
nonzero component in the corresponding direction. The aim n
of the present paper is to give a theoretical account of this s
observation, through a rigorous derivation of the model a Me?
equations governing the nonlinear interaction between the* 7‘1 -a @
modes.

X

*Electronic address: herve.leblond@univ-angers.fr FIG. 1. Space scales involved in waveguide geometry.
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t transverse variablg. It can thus describe a beam of some
PL:X(l)*E:f dt M (t—ty)E(ty), (2)  hundred micrometers width, propagating in a waveguide a
o few micrometers thick. For instance, the wavelengtbeing
about 0.5um, and the perturbative parameter5x 103,

the order of magnitude of the pulse width and length.is
=N\/e=100 um, which corresponds to a characteristic du-

and a nonlinear pafy_ corresponding to the nonlinear po-
larization such that

PuL=x®*(E,E,E) rationzof 0.3 ps, and the propagation distance is alidut
=Nec=2 cm.
t tl t2 . . . . .
:f dtlf dtZJ' oyt =ty =ty t—ty): The nonlinear term, being cubic, appears directly in the
IRl N nonlinear propagation equation, and does not give rise to any

particular problem. The difficulty comes from the linear part:
E(ty)E(t,)E(t3). 3 description of the guiding and treatment of the wave packet.

The boundary conditions at the two interfaces are that of the
¥ andy(® are, respectively, the linear and third-order non-electromagnetism, and the continuity conditions for the mag-
linear susceptibility tensors. Experiments have been pemetic field must be taken into account. We retrieve in this
formed using a liquid medium such as {JJ24]. Then, as in way the complete description of the guided modes, TE, and
any centrosymmetrical material, the second-order nonlineafMs. In the TM modes, the electric fielel has a longitudinal
susceptibility tensoi(?) is zero. This condition is assumed component. After a long computation, we derive the NLS
to be satisfied here. The fieldsandP undergo a threefold equation that describes the evolution of the amplitude of a
expansion: in a power series of some small paramgtéra  temporal pulse for an isolated mode, submitted to its self-
series of harmonics of each fundamental frequency, and ophase modulation only, as
the linear modes of the waveguide.

: " a2 2N —
This expansion is written as 2ikdA—kk';A+T|A]*A=0, 6
o where A is the wave amplitude. In this way we obtain in
E= E s'Ef e'?i, (4) particular an explicit expression of the self-phase modulation
I

coefficientI” which takes into account the waveguide struc-

where the indey labels both the phase; and the corre- ture. For the TE modes, this expressioras]

sponding amplitud&| . It refers either to a waveguide mode I=T=yx3 (0,0,— o) )

or to one of its harmonics. The amplitudgp are functions e oot

of y and of slow variables to be specified. The polarizationwhere the coefficienty; has a complicated expression that

densityP is expanded in the same way. involves the guide thickness the transverse wave vectqr

of the guided wave, and the decay lengths,ldnd 1k, of

the two evanescent waves that exist on each side of the guid-
In a preliminary study23], we considered the propaga- ing layer. Notice thaty, k,, andks; depend on the mode, and

tion of a wide enough short pulse, of the “temporal” type, through it on the parameters of the guide: its thickreeasd

corresponding to a unique mode of the guide. We performeghe optical indicesn, n,, andn; of the three media. The

a standard nonlinear Sclifinger (NLS)-type expansion,  expression of the nonlinear coefficieftfor a TM mode is
which used the slow variables

B. Study of an isolated mode

I'=In= 7713)(5(:;))()((0,(1),—(0)+ 77le§<?;/)3/>&“)1“)1_‘0)-

T=8(t—§), =gz (5) ®8)

The coefficientsy,, and 4, are expressed also as functions

The y dependency describes the transverse structure of thef these parameters. A plot of the valuesl@fandI,, cor-
waveguide modesy is a variable of ordee®, not a slow responding to the first two guided modes Ta&hd TM,, for
variable, which gives an account of the following assump-values of the parameters close to that of the experiments, is
tion: the waveguide thickness has the same order of magngiven in Fig. 2. The difference between these two quantities
tude as the wavelength. The variabler describes the lon- is weak, but can explain the observed polarization instability.
gitudinal or temporal shape of the pulse, in a frame moving
at the wave packet velocity. It is a slow variable of order 1. INTERACTION BETWEEN TWO MODES
e, which means that the pulse length has the same order of
magnitude as =\/e. The variableé=¢ex gives account of
the transverse shape of the beam, in the same scale as  While the previous ansatz was defined in order to be as
while ¢ is the variable that describes the evolution of theclose as possible to the standard derivation of a NLS equa-
pulse shape during the propagation. Its ordesis giving  tion as in Ref[26], we intend here to set the problem close
account for propagation distances abBut \/e?. to some experimental situation, which is as follows: The

This scaling is almost the same as is commonly used fopulse length is about 30 ps, which is so long with regard to
the derivation of the nonlinear Scllinger equation in bulk the optical period that the longitudinal variations of the pulse
media[25]. The main difference lies in the existence of the should be neglected. The value of the group velocity disper-

A. The physical situation
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sionk” in the considered materials is very small, which im- 2a (um)
proves this approximation. Thus, formally, we consider a sta-
tionary beam, not modulated in time. The amplitui¢sare FIG. 3. Representation of the wave vectocomputed for the
functions ofy and of slow variables,{) defined by TE,, TE,, TM;, and TM, modes, against the guide thickness 2

The difference between the valueskafbtained for a TE and for the
E=sx, (= e27. (9) relative TM mode is very small, even in very thin guides.
and the conjugated phases.= — ¢, ande _,,= — ¢, Ata

We are interested in soliton-type propagation, often dehigher order, the phase of the mode harmdriias the fol-
scribed as a balance between diffraction and nonlinearit)ﬁ._)wing expression:

This effect can arise only if the propagation length has the

same order of magnitude as the diffraction length or Ray-

leigh length, namely, the latter isy=kw? wherew is the ¢ =Kz ojt=Ppeget Pmem,

beam waist. In the present case, the beam waist is about a

few L=\/e. The Rayleigh length associated withis then ~ Wherep, andp, are arbitrary algebraic integers.

Lr=Kk\?/2. This shows that the correct order of magnitude

of the variable{ is &2, B. The “exact” computation
Second, the wave field decomposes on the linear propa-

gation modes of the waveguide. There are two classes of EXPansions(4), together with definition(9) of the slow
waveguide modes, TE (FE TE,,...) and TM (TM variables¢ and ¢, are substituted into the basic equations

TMs,, ... ), corresponding to the two perpendicular trans-(1)—(3). Then the coefficients of each power ofare col-
verse linear polarizations. Interaction between modes is modgcted to obtain a set of equations, which we solve order by
efficient when their group and phase velocities are very clos@'der- , ] )
together. It can be seen that the propagation constants of a At first order, assuming that the amplituéig depicts a
TE, and a TV, mode with the same are very close to- |E mode, we have
gether, while the difference between the propagation con-

(11)

e,x
stants for a TE and a TE, mode withn#n’ is much larger =t
(Fig. 9. Therefore the study of nonlinear interaction between E;=| O |, (12
modes is of particular interest when the modes considered 0

are a TE mode and a T\ one, with the sama. The beam
used experimentally has essentially a Gaussian shape. Th . OX mpie:
linear decomposition of such a Gaussian beam on the bas\@ere the amplitudé;~ satisfies
of the waveguide modes shows that the first modes take the

major part of the energy as shown in Table I. Therefore we JGES*+ (w?n?—k3)EF*=0. (13
restrict the study to the case where the dominant term in
expansion(4) of the electric fieldE involves only two TABLE |. Decomposition of the incident Gaussian beam on the

modes, a TE one and a TM one, intended to bg 8Bd  waveguide modes. For eatk 1,2, .. .,6,1,=*ZG(y)E(y)dy,
TMg, despite this specification not being involved in the for-where E; and G are the transverse profiles of the Tiode and

mal computation. Gaussian input, respectively.
Formally, the dominant term of order* in Eq. (4) con-
tains two fundamental phasg¢s e or m with Mode TE TE, TE; TE, TE; TE;

i /14 1 0.065 0.120 0.058 0.076 0.022

pe=Koz—ot, op=Knz— ot, (20
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The resolution of Eq9(13) with the electromagnetic bound- Here A, and A, are the respective amplitudes of the two
ary conditions leads to the dispersion relation for the TEconsidered modes. The cross-phase modulation coefficients

waveguide modeR25]:

_ Qe( k2e+ k3e)

tan(2qg.a) = , (14
© qg - k2ek3e

g, andh, are, as the self-phase modulation coefficidn{s

andTl,,, proportional to some components of the€) tensor.
The proportionality constants depend in a complicated, but
explicitly known, way on the waveguide parameters.

The model Egs.(22) and(23)] gives account of self- and

whereq; andk;; (j=e,m, i=2,3) are the transverse wave cross-phase modulation. It does not allow any energy ex-

vectors, related to the longitudinal wave vectgrand the

change between the two modes. This feature is easily proven

pulsationw through the dispersion relation of optical waves by multiplying the first equation bAg , the second b,

in bulk media, which reads a$<£2,3 andj=e,m)

qj=Jo’n*-k?, (15)
kij= Vki — w?n?. (16)

In the same way, assuming thaf' depicts a TM mode,

0
EP=| ETV |, (17)
ET
with
dyETY +iknET"*=0, (183
2—m,z 2 2_k2 mz__ b
FET?+ (w?nf — ki) ETY*=0. (18b

subtracting the complex conjugate, and integrating over all
values of¢. This model assumes that the phase mismatch
(km—ke) between the two modes is large, and is adapted to
the description of the interaction between ,T&nd TM,,
with n#n’. It obviously generalizes to two modes J&nd
TE, or TM, and TM,, modes withn#n’.

C. Four-wave-mixing term

However experiments show that an energy exchange can
occur[24]. In fact, although formally distinct, the phase ve-
locities of the two modes are very close together: their rela-
tive difference is about IC°. For instance, for a guide of
6 wm thickness, the relative differencék/k between the
wave vectors of TEand TM, modes is 1, X 10 ¢. When a
finite value of the perturbative parameteris chosen, it is
typically e=10"3: a difference as small as this value of
S6k/k must be considered as zero. From the mathematical
point of view, sk/k is finite, while ¢ tends to 0, which as-

The resolution of Eqs(18), taking into account the electro- sumes that is much smaller thawk/k. The rigorous math-
magnetic boundary conditions, leads to the dispersion relaematical derivation of the system of Eq82) and (23) be-

tion of the TM modes:

2 2 2
amn“(Komn3+Ksmn3)
tan(2qna)= m2 > zm il "
(qmn2n3_k2mk3mn )

19

The second order leads to equations analogous to (Egs.
and (18), with the index 1 replaced by 2.

The general expression of the nonlinear polarization vec-

tor which arises from the third order is

- 3

(PR IR Pt

X0 0,0, ) ELEZES. (20

1

comes erroneous when we replace the infinitely smdlly
some finite value. In particular, the system of E(@2) and

(23) is valid only when the relative difference between the
wave vectors of the two modes is above the values of
which is by no means the case in the experimental situation
considered. Therefore we use from now on a little more phe-
nomenological approach. Formally, we write
ke— km=£25K, (24)
which corresponds to the physical orders of magnitude. It
must be noticed that Eq24) is not perfectly consistent from
the mathematical point of view, since initially the difference
ke— K, did not depend or. In fact it seems to be impos-

This polarization vector gives account of an eventual cousible to give account of the smalllnes.s of this quantity in the
pling between waveguide modes. For instance, regarding thgame of the multiscale expansion in a perfectly rigorous
X component, apart from the permutations, there are twavay. Using Eq.(24) and writing down explicitly the phase

triplets that satisfy the phase matching conditions:

(@i, €)1, ?j,) = (Pe,Pe,— Pe) (21a
(0,10, ¢i,)=(Pe . @m:— @m). (21b

This way we obtain the following model:
2ikedAet JAe+ T | A ?Act 0ol A ?Ae=0,  (22)

2iKmd Amt 92AN+T | Apl2An+hy A 2AL=0. (23)

factorse'*e? ande'*m” in expressior(20) for the polarization
vector component®5*, P5Y, and P$? yields, taking into
account they®® tensor symmetries,
PSeret= (32 T PR+ 612D
+[ETHEF e+ 3x) L (ET)?

+(Elm,2)2] Eti,x* ei(zkmfke)z. (25)

(* denotes complex conjugationThe phase mismatck,
-k, can be written as
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el (20m~¢e) — i (Zkn—ke) 2~ 0t — gi peg =21 kL (26)
and the nonlinear polarization componét§* becomes
P = X0 ET " PET + BXS [ BT+ [ET %) ER”
+3x3) J(EPY) 2+ (EP?)2ES ™ e 12K (27)

Using the same procedure we get, f}f"Y and P3"?,

PEY =30l ETYIPETY + 6x(|ET 72+ [EF D ETY

- ; A
+ XL (BT 2+ (ES)2]ET* €29, (28) Ac=A, ¢
0.5 0.5
PY= Xl BT PED 4 6X ([ EDYI?+ [ES ) ET . oL Aw
~ ; 0 20 40 60 80 100 0 20 40 60 80 100
+ 3N (ET)?+(EP)PIED™ e (29 Fos -
= I,=0.999

Formally, the phase matching is realized, in what concerns ) _ )
the z dependency, since it has been possible to incorporate FIG. 4. Comparison of the evolution of the amplitudes of the

the phase mismatch into a dependency with regard to thiwo polarization components, for a small variation of the self-phase
slow variable¢ modulation coefficieni’,,. On the left: evolution of the amplitudes

A. andA,, of the TE and TM modes, respectively, against transver-
sal spacex and propagation distan@e assuming the bulk values of
a§E§'X+ (wzn_z_ kﬁ)E%X: _ 2ike(7§E'f‘X the nonlinegr coefficients. Bpttom: evolution of thg maximum valge
of the amplitudes. On the right: the same quantities but the nonlin-
—aéE%x—wZP%X, (30 ear self-phase modulation of the TM molig, has been reduced
from 1 to 0.999. Polarization switching is observed.

The third order of the expansion leads to the equations

ik
IETY+iknET?= — 9,EP*— n—;“ Py
i

hy= 7]2X§<5;/)xy' hy= 773X§<?/))/x1 (35

1 where the coefficients,, ys, 75, and 53 are expressed

- —d,PT, (31) explicitly in terms of the waveguide parameters. They are
niz given in the Appendix.
The first nonlinear terms in Eq$33) and (34) give ac-

FET?+ (w?nf —K5)ES= — 2ikyd BT — G2E]"? count of the self-phase modulation. Notice the symmetry
. ) breaking introduced by the waveguide for TM modes. In-

—Ik—ma Pm*y—%Pm'Z deed, the self-action term,, cannot be factorized in the
2 3 2738 - same way ad’, (expressions given in Ref23)). The x3),
(32 and ¥ components have then different weights. This

I 1
XyyX
leads to different self-focusing powers. The second nonlinear
We solve the above differential equations where the rightterms in Egs.(33) and (34) describe the interaction of the
hand-side member depends only on expressions calculatedt®#o components through the variations of the optical index
the first order. Applying boundary conditions, it yields after ainduced on each component by the other. The last terms in
large amount of calculations the following nonlinear coupledooth equations are the four-wave-mixing terms; they enable
propagation equations: the energy exchange between the two orthogonal compo-
nents.
H 2 2 2
2kedehet &§A6+F6|Ae| At G2lAnl"Ae D. Polarization switching

+gARATe H¢=0, (33 The numerical resolution of Eqé33) and(34) shows that

the difference between the self-phase modulation constants

2iKpd A+ (9§Am+ Fm|Am|2Am+ h2|Ae|2Am I'e and T, although very small, is large enough. to give

_ account of the experimentally observed commutation of po-

+haAZAKe? K =0. (34)  larization. On the left half of Fig. 4 is represented the evo-

lution of the amplitudes of the two componerits andA,,,

The nonlinear interaction coefficients,gs,h,,hs are for a hyperbolic secant shaped initial data, corresponding to

a soliton, whose polarization is linear, making a 45° angle

~(3) ~(3) with the plane of the guide. In this computation, the coeffi-

2= YoXxyxyr 93 Y3Xxyyx: cients have the normalized values valid in a bulk isotropic
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FIG. 5. Relative evolution of the amplitudes of the two polar- Input peak power |Aof?

ization components: experimental data to be compared to the theo-

retical computation of Fig. 6. FIG. 6. Relative evolution of the amplitudes of the two polar-

ization components, computed theoretically using the coefficient of
medium:T'e=T",=1, g,=h,=2/3, andgs=h;=1/3. Itis  Table II.
seen that the pulse propagates without deformation or varia-

tion of its polarization. On the right half of the same figure is

. . . . ields Fig. 6. It reproduces the polarization switching with a
represented the evolution of the same amplitude in a slightl . .
: X X - ood agreement with experiment, as can be seen from com-
different case: the self-phase modulation coefficient of th

TM mode has been replaced By, =0.999, the remaining parison with the corresponding experimental Fig. 5.

being unchanged. It is seen that a commutation, or rather an

oscillation, of the polarization occurs. Intentionally, we did IV. CONCLUSION

not take into accoun_t in this computation the variations of the 151 the Maxwell equations we have derived the general
values of the coefficientg,, h,, gs, andhs due to the wave propagation equations in a nonlinear waveguide for TE
nd T™M modes. While, regarding its linear part, the compu-
tation perfectly agrees with the already known results, the
nonlinear coefficient in the nonlinear Schinger equation

shown a polarization switching, from the TM to the TE po- depends on the considered mode and the waveguide geom-

larization, as soon as the incident polarization is not purelftry' We show in particular that the self-phase modulation

TM, i.e., not exactly perpendicular to the plane of the guide coefficients depend on the polarization of the beam, with that

cf. Fig. 5. When the input power is increased, in the first®f the TM mode inferior to that of the TE one, in agreement

stage where self-phase modulation occurs, the amplitude &¥ith experimental results. Using an expansion formed by a
the TE component increases while that of the TM one deSuperposition of linear modes, we are able to describe the
creases. In the second stage, this phenomenon saturates difgraction between a TE and a TM mode, which occurs
to the action of the stimulated Raman scattering, as shown ifuring the propagation. The description uses two coupled
Fig. 5. The theoretical study of the latter observation is left"onlinear Schrdinger equations, whose coefficients have

for further investigation. See Re®4] for more details about Peen computed explicitly. We have shown that the small
this experiment. Using the formulas listed in the Appendix,variations of these coefficients that have been computed give
we have computed the accurate values of the nonlinear c@ccount of the polarization instability which had been ob-
efficients of the evolution Eqg33) and (34) corresponding servgd experimentally. Numerical simulations confirmed the
to the experimental data. The obtained coefficients are giveffominance of the TE mode upon the TM one.

in Table Il. The numerical resolution of Eq&3) and (34)

using these coefficients has been performed. In order that the

simulation can be compared with the experimental data, w&PPENDIX: NONLINEAR INTERACTION COEFFICIENTS
computed the amplitudes of the modes at the output for a
fixed propagation length and varying input power. This

the computed variation of, despite being small, is suffi-
cient by itself to give account of this experimental result.
Experiments using a waveguide filled with C®ave

The coupled nonlinear propagation Eq83) and (34),
that describe the coupling between the two polarizations in
the waveguide, involve four interaction coefficiets, g3,
TABLE II. Values of the nonlinear interaction coefficients per- h, andh, related to components of thg® tensor through

taining to the experimental data. expression$35). The expressions of the coefficients, ys,
T T 7,, and 3 involved in these formulas are given below.
e m r2 72 3 3 Coefficientsg, and h, express the action of the guide

0.9999 09993 0.6681 06649 0.3341 0.3324 induced by one polarization on the other, and invojeand
7., respectively:
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3k29w2 2ig.a 2 2igma 2ia(gm+de)
¥2=2R e {401020m( r1p267%%) +205073( 1 3879%) — (Qe— Om) JeTa( papto€” 4 Im™ %))

+(qm+ qe)QeU3(M5M2e2ia(qeiqm)) —80,0mo1[Koet a(qg—’— kge)]}} ) (A1)
3K3(KomQm— ik _ . _ _
ﬂzZZRE{ = 2mzq;‘4 m)qm(—8Qe0102([31€2'q"‘a)+ﬂzez'q‘*aJrﬁsez'a(q"‘”e)+,34€2'a(q"‘7q9)
+ 1607501 Arnlef Komoa(Kiy — k) — AL A Ko + K) + K361 | (A2)
|
W|th ,U,5:kze+|qe_2|qm, (Alo)
B1=aya; (—aguaia; +iosKom), (A3) o1=02—q2, (A11)
B2=4iK3 0 (2Kn 02— A02) 7=tk (A12)
m m?
+ 4kl 205( 20k + A= Ki) — 7602] A
2 2.2 2 2 04:km+k2mqm! (A14)
+8k2mqumkm(2kaeUZ_quZ 2 2
+aIaSkh(2K0E- o), (A) 75~ Ko™ (A19
. =kt +qm, Al16
Ba=2ik3 03 2KE02 + Unllers— G20 76 K O (A0
_ 2
+ 4K Amo2( 2K G be— 2K do — Amda02+ Amor2) a1 =K+ KomQm, (A17)
+ 2ik 5l (dm+ Ok + 3K+ 3kn) didle = Ot K- (A18)
+Qﬁq(kfn+ 4Q§1k§1+ %)Uz Coefficientsgs and h; describe the energy exchange be-

tween the TE and TM components, as usually do four wave

mixing terms. These terms depend only on #j&,, compo-
+ 4Ky 0ok G 2K2.02+ G20, — 2k2020e— a2 0,)  nent of the nonlinear susceptibility tensor. The waveguide
action is represented by the coefficienptsand 73,

— 2( g+ 3K+ 207K3) dmas — 4k50305 ]

m

+ 200k 2knGe + Andes o), (AS) )
. _ 269 2iqa
Ba=2ik3,03(— 2k202+ qmbeT3+ 9402) J’S—ZRE{ 274 {—401030m(pn1m279%)
+ 4K Amo2( 2K Grbe— 2K e+ AmU202— Amor2) — 202075( 113€%9m3) + (Qo— Q) Qe 02 €23 Am™ de))
+ 2ik5 [ (T 9Kn 0+ 3KGAm+ 3K3) A e (G + Ge) oo e ,€212(0e=m)
3,14 20,2 , 4
—qn(ki+4qki+q.) o
i M A2 + 8030l Koot A2+ K2 T, (A19)
4 4 21,2\ 3 2 2.3 2 e’ N2e
+z(qm+3km+Zkam)qmqe_4kmqe0'2
2 2
+4k2m02k§1Qm(2k§nqg_meéo'Z_2k§1Qﬁ1qe+ Q?no'z) 7a=2 RE{3k2m(k2r’rfm_|km)qm (810010 5192iqma)
— 2igKm(2K505— Amleo 3~ Gro2) (A6) ' 74 _
nd + 52e2|qea+ 53eZ|a(qm+qe)+ 54e2|a(qm—qe)
. + 160'40'1qmqe{ Komoa( kgm_ k%)
m1=1+kyea+igea, (A7)
3= 02— 202+ 2iKpeGm+ K2, (A8) +a[Ah(Komt ki) +Kmos 1D |, (A20)
pa=Koo+iQot 2iq ) (A9)  with
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54: 2i kngfn( - 2kr2nqg_ Omdeo2— qﬁ]0-3)
+4K3 Gmoa( 2Ka 02 0e— 2K5 03— amd2o s+ 3 os)

+2ik5 [ (— o+ 4KGa5,+ 3K5) 0205 e

61=ayaj (iagmayas +Kymoy), (A21)
8,= 4K Om( 2K 05+ 0h03)
+8050mUek3m( — Umos— 2K502)
— 4ik2, G3[203(2k2 0%+ G + 3K%) — orgors] + (O 4K 05+ K dos

+80,0e0mk502(2k2 a2+ 92 03)

+4igkn(2Ka 05+ aho3), (A22)

+20505( — Ay — 2k g+ Kn) — 4k i)
+ 4k2m0'2kr2an(2kr2nqg+ qmq§0'3_ Zkﬁwqﬁqqe_ Qr3n0'3)

53=2ik4 43(2k2.02— Orllecra+ G20ra) — 2ig k(2K 05+ AmGeo2+ Ghos). (A24)
m-im m+ie m

+4K3 Umo2( 2K 05 0e— 2K503+ 40503 — 0303)

+2ik 5[ — (G + 4KG05+ K 0o

The factorsy, and 5, in the denominators of expressions
(A1), (A2), (A19), (A20) have the following expressions:

Ya=[(1+Kpe2) 010k (3p5e 92+ 5 207 21968) ],
+ (= O+ 4Ka o+ 3Ky) 02070 (A25)

— 20505 — A~ 2Kaam+ Kp) — 4khados]
+ 4k2m0'2k2mqm(2kﬁ1q2_ qmqga'S_ 2k2mqr2nQe+ qﬁqa'B)

+2ig3Km(2K305— Umbea+ 0503), (A23)

_ 2 2r (K2 3 4
74=2KnN“eo1 @103 [ (3K3mUma0 3+ 30mKomo s+ iKnos
+ 3KomUmkino2) €79 +iat 2ad(adnkimat +konoy

+ k3 as e 2iama], (A26)
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